实时数仓-Doris ON ES
原理介绍Doris通过创建外部表方式将Doris的分布式查询规划能力和ES(Elasticsearch)的全文检索能力相结合,提供更完善的OLAP分析场景解决方案,支持:ES中的多index分布式Join查询Doris和ES中的表联合查询,更复杂的全文检索过滤创建ES外表后,FE会请求建表指定的主机,获取所有节点的HTTP端口信息以及index的shard分布信息等,如果请求失败会顺序遍历host
原理介绍:原文点击
Doris通过创建外部表方式将Doris的分布式查询规划能力和ES(Elasticsearch)的全文检索能力相结合,提供更完善的OLAP分析场景解决方案,支持:
-
ES中的多index分布式Join查询
-
Doris和ES中的表联合查询,更复杂的全文检索过滤
创建ES外表后,FE会请求建表指定的主机,获取所有节点的HTTP端口信息以及index的shard分布信息等,如果请求失败会顺序遍历host列表直至成功或完全失败。
执行查询时,会根据FE得到的一些节点信息和index的元数据信息,生成查询计划并发给对应的BE节点,BE节点会根据就近原则
即优先请求本地部署的ES节点,BE通过HTTP Scroll
方式流式的从ES index的每个分片中并发的获取数据
计算完结果后,返回给client端。
ES节点类型分为主节点、数据节点、协调节点,FE通过主节点获取ES信息,BE直接拉取数据节点获取数据。
实验过程
实验环境:doris版本0.14.0,elasticsearch版本7.11.1
doris环境搭建及启动这里就不在叙述了,elasticsearch参考ES环境搭建及后续文章。
一、单节点查询:
1、创建doris外部表
CREATE EXTERNAL TABLE `es_table` (
`id` bigint(20) COMMENT "",
`k1` bigint(20) COMMENT "",
`k2` datetime COMMENT "",
`k3` varchar(20) COMMENT "",
`k4` varchar(100) COMMENT "",
`k5` float COMMENT ""
) ENGINE=ELASTICSEARCH
PARTITION BY RANGE(`id`)
()
PROPERTIES (
"host" = "http://192.168.244.129:9200",
"index" = "test”
);
2、ES初始化
1、创建test索引
{
"mappings": {
"properties": {
"k1": {
"type": "long",
"index": "true"
},
"k3": {
"type": "text",
"analyzer": "ik_max_word",
"search_analyzer": "ik_max_word"
},
"k4": {
"type": "text",
"analyzer": "ik_max_word",
"search_analyzer": "ik_max_word"
},
"k5": {
"type": "float"
},
"k2": {
"type": "date",
"format": "yyyy-MM-dd"
}
}
}
}
2、添加数据
{
"k1": 100,
"k2": "2020-01-01",
"k3": "Trying",
"k4": "Trying out Elasticsearch",
"k5": 10
}
数据添加成功后,在mysql客户端连接doris查询ES数据,看到如下结果代表doris查询ES成功。
3、批量添加数据
POST /_bulk
{"index":{"_index":"test"}}
{ "k1" : 100, "k2": "2020-01-01", "k3": "Trying out Elasticsearch", "k4": "Trying out Elasticsearch", "k5": 10.0}
{"index":{"_index":"test"}}
{ "k1" : 100, "k2": "2020-01-01", "k3": "Trying out Doris", "k4": "Trying out Doris", "k5": 10.0}
{"index":{"_index":"test"}}
{ "k1" : 100, "k2": "2020-01-01", "k3": "Doris On ES", "k4": "Doris On ES", "k5": 10.0}
{"index":{"_index":"test"}}
{ "k1" : 100, "k2": "2020-01-01", "k3": "Doris", "k4": "Doris", "k5": 10.0}
{"index":{"_index":"test"}}
{ "k1" : 100, "k2": "2020-01-01", "k3": "ES", "k4": "ES", "k5": 10.0}
执行模糊匹配查询:
二、JOIN查询:
1、创建外部表
2、ES创建索引test2
{
"mappings": {
"properties": {
"k1": {
"type": "long",
"index": "true"
},
"k3": {
"type": "text",
"analyzer": "ik_max_word",
"search_analyzer": "ik_max_word"
},
"k4": {
"type": "text",
"analyzer": "ik_max_word",
"search_analyzer": "ik_max_word"
},
"k5": {
"type": "float"
},
"k2": {
"type": "date",
"format": "yyyy-MM-dd"
}
}
}
}
3、ES添加数据
POST /_bulk
{"index":{"_index":"test2"}}
{ "k1" : 200, "k2": "2020-02-01", "k3": "Doris e ", "k4": "ES", "k5": 20.0}
4、执行JOIN查询
5、JOIN模糊查询
select * from test ,test2 where test.k1=test2.k1 and esquery
(test.k3, '{
"match": {
"k3": "ES"
}
}');
Doris ON ES 今天就介绍到这里了,觉得有用关注:蓝天Java大数据
更多推荐
所有评论(0)