1、资源调优

Flink性能调优的第一步,就是为任务分配合适的资源,在一定范围内,增加资源的分配与性能的提升是成正比的,实现了最优的资源配置后,在此基础上再考虑进行后面论述的性能调优策略。

(1)内存设置

Flink是实时流处理,关键在于资源情况能不能抗住高峰时期每秒的数据量,通常用QPS/TPS来描述数据情况。

bin/flink run \
-t yarn-per-job \
-d \
-p 5 \ -- 指定并行度
-Dyarn.applition.quene=test \ -- 指定yarn队列
-Djobmanager.memory.process.size=2048mb   \ -- JM内存设置 2-4G 足够
-Dtaskmanager.memory.process.size=6114mb \ --单个 TM设置 2-8G 足够
-Dtaskmanager.numberOfTaskSlots=2 \ 与容器核数1core : 1slot 或 1core : 2slot
-c com.yyds.WcApp 
/opt/yyds/flink/flink.jar

(2)并行度设置

1、最优并行度设置

flink程序开发完成后,先进行压测。任务并行度给10以下,测试单个并行度的处理上限。

总QPS/单并行度的处理能力 = 并行度

不能只从QPS去得出并行度,因为有些字段少、逻辑简单的任务,单并行度一秒处理几万条数据。而有些数据字段多,处理逻辑复杂,单并行度一秒只能处理1000条数据。
最好根据高峰期的QPS压测,并行度*1.2倍,富余一些资源。

压测合理并行度的方法:
压测的方式很简单,先在kafka中积压数据,之后开启Flink任务,出现反压,就是处理瓶颈。相当于水库先积水,一下子泄洪。数据可以是自己造的模拟数据,也可以是生产中的部分数据。

  • ①获得高峰期的qps,如每秒5w条
  • ②消费该高峰期的数据,达到反压状态后查看每秒处理的数据量y,就是单并行度的处理上限
  • ③x除以y,增加一点富余: 乘以1.2,就是合理的并行度。

具体步骤可参考:https://www.cnblogs.com/feizaijiawenzhu/p/16146794.html

并行度的优先级:
算子层次 > 执行环境层次 > 客户端层次 > 系统层次

2、source端并行度的设置

数据源端是 Kafka,Source的并行度设置为Kafka对应Topic的分区数。
如果已经等于 Kafka 的分区数,消费速度仍跟不上数据生产速度,考虑下Kafka 要扩大分区,同时调大并行度等于分区数。
Flink 的一个并行度可以处理一至多个分区的数据,如果并行度多于 Kafka 的分区数,那么就会造成有的并行度空闲,浪费资源。

3、Transform端并行度的配置
  • Keyby之前的算子

一般不会做太重的操作,都是比如map、filter、flatmap等处理较快的算子,并行度可以和source保持一致。

  • Keyby之后的算子

如果并发较大,建议设置并行度为 2 的整数次幂,例如:128、256、512;

小并发任务的并行度不一定需要设置成 2 的整数次幂;

大并发任务如果没有 KeyBy,并行度也无需设置为 2 的整数次幂;

4、Sink端并行度的配置

如果Sink端是Kafka,可以设为Kafka对应Topic的分区数。

Sink 端的数据量小,比较常见的就是监控告警的场景,并行度可以设置的小一些。

Source 端的数据量是最小的,拿到 Source 端流过来的数据后做了细粒度的拆分,数据量不断的增加,到 Sink 端的数据量就非常大。
那么在 Sink 到下游的存储中间件的时候就需要提高并行度。

另外 Sink 端要与下游的服务进行交互,并行度还得根据下游的服务抗压能力来设置,如果在 Flink Sink 这端的数据量过大的话,且 Sink 处并行度也设置的很大,但下游的服务完全撑不住这么大的并发写入,可能会造成下游服务直接被写挂,所以最终还是要在 Sink 处的并行度做一定的权衡。

(3) RocksDB大状态调优

QPS即每秒查询率,是对一个特定的查询服务器在规定时间内所处理流量多少的衡量标准。
TPS:Transactions Per Second(每秒传输的事物处理个数),即服务器每秒处理的事务数。

RocksDB 是基于 LSM Tree 实现的(类似HBase),写数据都是先缓存到内存中,所以RocksDB 的写请求效率比较高
RocksDB 使用内存结合磁盘的方式来存储数据,每次获取数据时,先从内存中 blockcache 中查找,如果内存中没有再去磁盘中查询。

优化后差不多单并行度 TPS 5000 record/s,性能瓶颈主要在于 RocksDB 对磁盘的读请求,所以当处理性能不够时,仅需要横向扩展并行度即可提高整个Job 的吞吐量。以下几个调优参数:
设置本地RocksDB多目录

在flink-conf.yaml中配置:

state.backend.rocksdb.localdir: /data1/flink/rocksdb,/data2/flink/rocksdb,/data3/flink/rocksdb

注意:
不要配置单块磁盘的多个目录,务必将目录配置到多块不同的磁盘上,让多块磁盘来分担压力。
当设置多个 RocksDB 本地磁盘目录时,Flink 会随机选择要使用的目录,所以就可能存在三个并行度共用同一目录的情况。
如果服务器磁盘数较多,一般不会出现该情况,但是如果任务重启后吞吐量较低,可以检查是否发生了多个并行度共用同一块磁盘的情况。

当一个 TaskManager 包含 3 个 slot 时,那么单个服务器上的三个并行度都对磁盘造成频繁读写,从而导致三个并行度的之间相互争抢同一个磁盘 io,
这样务必导致三个并行度的吞吐量都会下降。设置多目录实现三个并行度使用不同的硬盘从而减少资源竞争。

测试案例如下:
如下所示是测试过程中磁盘的 IO 使用率,可以看出三个大状态算子的并行度分别对应了三块磁盘,这三块磁盘的 IO 平均使用率都保持在 45% 左右,
IO 最高使用率几乎都是 100%,而其他磁盘的 IO 平均使用率相对低很多。由此可见使用 RocksDB 做为状态后端且有大状态的频繁读取时, 对磁盘IO性能消耗确实比较大。
在这里插入图片描述

如下图所示,其中两个并行度共用了 sdb 磁盘,一个并行度使用 sdj磁盘。可以看到 sdb 磁盘的 IO 使用率已经达到了 91.6%,就会导致 sdb 磁盘对应的两个并行度吞吐量大大降低,从而使得整个 Flink 任务吞吐量降低。如果每个服务器上有一两块 SSD,强烈建议将 RocksDB 的本地磁盘目录配置到 SSD 的目录下,从 HDD 改为 SSD 对于性能的提升可能比配置 10 个优化参数更有效。

在这里插入图片描述

state.backend.incremental:开启增量检查点,默认false,改为true。

state.backend.rocksdb.predefined-options:SPINNING_DISK_OPTIMIZED_HIGH_MEM设置为机械硬盘+内存模式,有条件上SSD,指定为FLASH_SSD_OPTIMIZED

state.backend.rocksdb.block.cache-size: 整个 RocksDB 共享一个 block cache,读数据时内存的 cache 大小,该参数越大读数据时缓存命中率越高,默认大小为 8 MB,
建议设置到 64 ~ 256 MB。

state.backend.rocksdb.thread.num: 用于后台 flush 和合并 sst 文件的线程数,默认为 1,建议调大,机械硬盘用户可以改为 4 等更大的值。

state.backend.rocksdb.writebuffer.size: RocksDB 中,每个 State 使用一个 Column Family,每个 Column Family 使用独占的 write buffer,建议调大,例如:32M

state.backend.rocksdb.writebuffer.count: 每个 Column Family 对应的 writebuffer 数目,默认值是 2,对于机械磁盘来说,如果内存⾜够大,可以调大到 5 左右

state.backend.rocksdb.writebuffer.number-to-merge: 将数据从 writebuffer 中 flush 到磁盘时,需要合并的 writebuffer 数量,默认值为 1,可以调成3。

state.backend.local-recovery: 设置本地恢复,当 Flink 任务失败时,可以基于本地的状态信息进行恢复任务,可能不需要从 hdfs 拉取数据

(4)Checkpoint设置

一般我们的 Checkpoint 时间间隔可以设置为分钟级别,例如 1 分钟、3 分钟,对于状态很大的任务每次 Checkpoint 访问 HDFS 比较耗时,
可以设置为 5~10 分钟一次Checkpoint,并且调大两次 Checkpoint 之间的暂停间隔,例如设置两次Checkpoint 之间至少暂停 4或8 分钟。

如果 Checkpoint 语义配置为 EXACTLY_ONCE,那么在 Checkpoint 过程中还会存在 barrier 对齐的过程,可以通过 Flink Web UI 的 Checkpoint 选项卡来查看
Checkpoint 过程中各阶段的耗时情况,从而确定到底是哪个阶段导致 Checkpoint 时间过长然后针对性的解决问题。

// 使⽤ RocksDBStateBackend 做为状态后端,并开启增量 Checkpoint
 RocksDBStateBackend rocksDBStateBackend = new  RocksDBStateBackend("hdfs://node01:8020/flink/checkpoints", true);
 env.setStateBackend(rocksDBStateBackend);

 // 开启Checkpoint,间隔为 3 分钟
 env.enableCheckpointing(TimeUnit.MINUTES.toMillis(3));
 // 配置 Checkpoint
 CheckpointConfig checkpointConf = env.getCheckpointConfig();
 checkpointConf.setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE)
 // 最小间隔 4分钟
 checkpointConf.setMinPauseBetweenCheckpoints(TimeUnit.MINUTES.toMillis(4))
 // 超时时间 10分钟
 checkpointConf.setCheckpointTimeout(TimeUnit.MINUTES.toMillis(10));
 // 保存checkpoint
 checkpointConf.enableExternalizedCheckpoints(
 CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);

2、反压处理

反压机制是指系统能够自己检测到被阻塞的 Operator,然后自适应地降低源头或上游数据的发送速率,从而维持整个系统的稳定。

(1) 反压现象及如何定位

Flink 通过对运行中的任务进行采样来确定其反压,如果一个 Task 因为反压导致处理速度降低了,那么它肯定会卡在向 LocalBufferPool 申请内存块上。
监控对正常的任务运行有一定影响,因此只有当 Web 页面切换到 Job 的 BackPressure 页面时,JobManager 才会对该 Job 触发反压监控。
默认情况下,JobManager 会触发 100 次 stack trace 采样,每次间隔 50ms 来确定反压。
Web 界面看到的比率表示在内部方法调用中有多少 stack trace 被卡在LocalBufferPool.requestBufferBlocking(),例如: 0.01 表示在 100 个采样中只有 1 个
被卡在LocalBufferPool.requestBufferBlocking()。采样得到的比例与反压状态的对应关系如下:

OK: 0 <= 比例 <= 0.10
LOW: 0.10 < 比例 <= 0.5
HIGH: 0.5 < 比例 <= 1

Task 的状态为 OK 表示没有反压,HIGH 表示这个 Task 被反压。

一、利用Flink Web UI定位产生反压的位置

在 Flink Web UI 中有 BackPressure 的页面,通过该页面可以查看任务中 subtask 的反压状态,如下两图所示,分别展示了状态是 OK 和 HIGH 的场景。

排查的时候,先把operator chain禁用,方便定位。
在这里插入图片描述

在这里插入图片描述

二、利用Metrics定位反压位置

当某个 Task 吞吐量下降时,基于 Credit 的反压机制,上游不会给该 Task 发送数据,所以该 Task 不会频繁卡在向 Buffer Pool 去申请 Buffer。反压监控实现原理就是监控 Task 是否卡在申请 buffer 这一步,所以遇到瓶颈的 Task 对应的反压⻚⾯必然会显示 OK,即表示没有受到反压。

如果该 Task 吞吐量下降,造成该Task 上游的 Task 出现反压时,必然会存在:该 Task 对应的 InputChannel 变满,已经申请不到可用的Buffer 空间。 如果该 Task 的 InputChannel 还能申请到可用 Buffer,那么上游就可以给该 Task 发送数据,上游 Task 也就不会被反压了,所以说遇到瓶颈且导致上游 Task 受到反压的 Task 对应的InputChannel 必然是满的(这⾥不考虑⽹络遇到瓶颈的情况)。从这个思路出发,可以对该 Task 的 InputChannel 的使用情况进行监控,如果 InputChannel 使用率 100%,那么该 Task 就是我们要找的反压源。Flink 1.9 及以上版本inPoolUsage 表示 inputFloatingBuffersUsage 和inputExclusiveBuffersUsage 的总和。

在这里插入图片描述

(2) 反压的原因及处理

先检查基本原因,然后再深入研究更复杂的原因,最后找出导致瓶颈的原因。下面列出从最基本到比较复杂的一些反压潜在原因。

注意:反压可能是暂时的,可能是由于负载高峰、CheckPoint 或作业重启引起的数据积压而导致反压。如果反压是暂时的,应该忽略它。

一、系统资源

检查涉及服务器基本资源的使用情况,如CPU、网络或磁盘I/O,目前 Flink 任务使用最主要的还是内存和 CPU 资源,本地磁盘、依赖的外部存储资源以及网卡资源一般都不会是瓶颈。如果某些资源被充分利用或大量使用,可以借助分析工具,分析性能瓶颈(JVM Profiler+ FlameGraph生成火焰图)。

  • 针对特定的资源调优Flink

  • 通过增加并行度或增加集群中的服务器数量来横向扩展

  • 减少瓶颈算子上游的并行度,从而减少瓶颈算子接收的数据量(不建议,可能造成整个Job数据延迟增大)

二、垃圾回收(GC)

长时间GC暂停会导致性能问题。可以通过打印调试GC日志(通过-XX:+PrintGCDetails)或使用某些内存或 GC 分析器(GCViewer工具)来验证是否处于这种情况。

在Flink提交脚本中,设置JVM参数,打印GC日志:

bin/flink run
-t yarn-per-job
-d
-p 5 \ 指定并行度
-Dyarn.application.queue=test \ 指定yarn队列
-Djobmanager.memory.process.size=1024mb \ 指定JM的总进程大小
-Dtaskmanager.memory.process.size=1024mb \ 指定每个TM的总进程大小
-Dtaskmanager.numberOfTaskSlots=2 \ 指定每个TM的slot数
-Denv.java.opts="-XX:+PrintGCDetails -XX:+PrintGCDateStamps"
-c com.yyds.WcApp 
/opt/yyds/flink/flink.jar

因为是on yarn模式,运行的节点一个一个找比较麻烦。可以打开WebUI,选择JobManager或者TaskManager,点击Stdout,即可看到GC日志,点击下载按钮即可将GC日志通过HTTP的方式下载下来。

扩展:设Full GC后老年代剩余大小空间为M,那么堆的大小建议3 ~ 4倍M,新生代为1 ~ 1.5倍M,老年代应为2 ~ 3倍M。

三、负载不平衡

如果瓶颈是由数据倾斜引起的,可以尝试通过将数据分区的 key 进行加盐或通过实现本地预聚合来减轻数据倾斜的影响。(关于数据倾斜的详细解决方案,后续讨论

四、外部依赖

如果发现我们的 Source 端数据读取性能比较低或者 Sink 端写入性能较差,需要检查第三方组件是否遇到瓶颈。例如,Kafka 集群是否需要扩容,Kafka 连接器是否并行度较低,HBase 的 rowkey 是否遇到热点问题。关于第三方组件的性能问题,需要结合具体的组件来分析。

Logo

为开发者提供学习成长、分享交流、生态实践、资源工具等服务,帮助开发者快速成长。

更多推荐