目录

来历

驱动代码解析

driver加载

dtsi文件内容解析

        四个重要解析函数     


​​​​​​​

来历

        Linus Torvalds在2011年3月17日的ARM Linux邮件列表宣称“this whole ARM thing is a f*cking pain in the ass”,引发ARM Linux社区的地震,随后ARM社区进行了一系列的重大修正。在过去的ARM Linux中,arch/arm/plat-xxx和arch/arm/mach-xxx中充斥着大量的垃圾代码,相当多数的代码只是在描述板级细节,而这些板级细节对于内核来讲,不过是垃圾,如板上的platform设备、resource、i2c_board_info、spi_board_info以及各种硬件的platform_data。读者有兴趣可以统计下常见的s3c2410、s3c6410等板级目录,代码量在数万行。
        社区必须改变这种局面,于是PowerPC等其他体系架构下已经使用的Flattened Device Tree(FDT)进入ARM社区的视野。Device Tree是一种描述硬件的数据结构,它起源于 OpenFirmware (OF)。在Linux 2.6中,ARM架构的板极硬件细节过多地被硬编码在arch/arm/plat-xxx和arch/arm/mach-xxx,采用Device Tree后,许多硬件的细节可以直接透过它传递给Linux,而不再需要在kernel中进行大量的冗余编码。
        Device Tree由一系列被命名的结点(node)和属性(property)组成,而结点本身可包含子结点。所谓属性,其实就是成对出现的name和value。在Device Tree中,可描述的信息包括(原先这些信息大多被hard code到kernel中):

以下为一个dtsi示例

#include <dt-bindings/interrupt-controller/irq.h>
#include <dt-bindings/interrupt-controller/arm-gic.h>
#include <dt-bindings/soc/rockchip,boot-mode.h>

/ {
	#address-cells = <1>;
	#size-cells = <1>;

	interrupt-parent = <&gic>;

	aliases {
		ethernet0 = &emac;
		i2c0 = &i2c0;
		i2c1 = &i2c1;
		mshc0 = &emmc;
		mshc1 = &mmc0;
		serial0 = &uart0;
		serial1 = &uart1;
		spi0 = &spi0;
		spi1 = &spi1;
	};

	amba {
		compatible = "simple-bus";
		#address-cells = <1>;
		#size-cells = <1>;
		ranges;

		dmac1_s: dma-controller@20018000 {
			compatible = "arm,pl330", "arm,primecell";
			reg = <0x20018000 0x4000>;
			interrupts = <GIC_SPI 0 IRQ_TYPE_LEVEL_HIGH>,
				     <GIC_SPI 1 IRQ_TYPE_LEVEL_HIGH>;
			#dma-cells = <1>;
			arm,pl330-broken-no-flushp;
			clocks = <&cru ACLK_DMA1>;
			clock-names = "apb_pclk";
		};

		dmac1_ns: dma-controller@2001c000 {
			compatible = "arm,pl330", "arm,primecell";
			reg = <0x2001c000 0x4000>;
			interrupts = <GIC_SPI 0 IRQ_TYPE_LEVEL_HIGH>,
				     <GIC_SPI 1 IRQ_TYPE_LEVEL_HIGH>;
			#dma-cells = <1>;
			arm,pl330-broken-no-flushp;
			clocks = <&cru ACLK_DMA1>;
			clock-names = "apb_pclk";
			status = "disabled";
		};

		dmac2: dma-controller@20078000 {
			compatible = "arm,pl330", "arm,primecell";
			reg = <0x20078000 0x4000>;
			interrupts = <GIC_SPI 2 IRQ_TYPE_LEVEL_HIGH>,
				     <GIC_SPI 3 IRQ_TYPE_LEVEL_HIGH>;
			#dma-cells = <1>;
			arm,pl330-broken-no-flushp;
			clocks = <&cru ACLK_DMA2>;
			clock-names = "apb_pclk";
		};
	};


	uart0: serial@10124000 {
		compatible = "snps,dw-apb-uart";
		reg = <0x10124000 0x400>;
		interrupts = <GIC_SPI 34 IRQ_TYPE_LEVEL_HIGH>;
		reg-shift = <2>;
		reg-io-width = <1>;
		clock-names = "baudclk", "apb_pclk";
		clocks = <&cru SCLK_UART0>, <&cru PCLK_UART0>;
		status = "disabled";
	};

	uart1: serial@10126000 {
		compatible = "snps,dw-apb-uart";
		reg = <0x10126000 0x400>;
		interrupts = <GIC_SPI 35 IRQ_TYPE_LEVEL_HIGH>;
		reg-shift = <2>;
		reg-io-width = <1>;
		clock-names = "baudclk", "apb_pclk";
		clocks = <&cru SCLK_UART1>, <&cru PCLK_UART1>;
		status = "disabled";
	};

	usb_otg: usb@10180000 {
		compatible = "rockchip,rk3066-usb", "snps,dwc2";
		reg = <0x10180000 0x40000>;
		interrupts = <GIC_SPI 16 IRQ_TYPE_LEVEL_HIGH>;
		clocks = <&cru HCLK_OTG0>;
		clock-names = "otg";
		dr_mode = "otg";
		g-np-tx-fifo-size = <16>;
		g-rx-fifo-size = <275>;
		g-tx-fifo-size = <256 128 128 64 64 32>;
		phys = <&usbphy0>;
		phy-names = "usb2-phy";
		status = "disabled";
	};

	usb_host: usb@101c0000 {
		compatible = "snps,dwc2";
		reg = <0x101c0000 0x40000>;
		interrupts = <GIC_SPI 17 IRQ_TYPE_LEVEL_HIGH>;
		clocks = <&cru HCLK_OTG1>;
		clock-names = "otg";
		dr_mode = "host";
		phys = <&usbphy1>;
		phy-names = "usb2-phy";
		status = "disabled";
	};

	emac: ethernet@10204000 {
		compatible = "snps,arc-emac";
		reg = <0x10204000 0x3c>;
		interrupts = <GIC_SPI 19 IRQ_TYPE_LEVEL_HIGH>;
		#address-cells = <1>;
		#size-cells = <0>;

		rockchip,grf = <&grf>;

		clocks = <&cru HCLK_EMAC>, <&cru SCLK_MAC>;
		clock-names = "hclk", "macref";
		max-speed = <100>;
		phy-mode = "rmii";

		status = "disabled";
	};

	emmc: dwmmc@1021c000 {
		compatible = "rockchip,rk2928-dw-mshc";
		reg = <0x1021c000 0x1000>;
		interrupts = <GIC_SPI 25 IRQ_TYPE_LEVEL_HIGH>;
		clocks = <&cru HCLK_EMMC>, <&cru SCLK_EMMC>;
		clock-names = "biu", "ciu";
		dmas = <&dmac2 4>;
		dma-names = "rx-tx";
		fifo-depth = <256>;
		resets = <&cru SRST_EMMC>;
		reset-names = "reset";
		status = "disabled";
	};

	pmu: pmu@20004000 {
		compatible = "rockchip,rk3066-pmu", "syscon", "simple-mfd";
		reg = <0x20004000 0x100>;

		reboot-mode {
			compatible = "syscon-reboot-mode";
			offset = <0x40>;
			mode-normal = <BOOT_NORMAL>;
			mode-recovery = <BOOT_RECOVERY>;
			mode-bootloader = <BOOT_FASTBOOT>;
			mode-loader = <BOOT_BL_DOWNLOAD>;
		};
	};


	i2c0: i2c@2002d000 {
		compatible = "rockchip,rk3066-i2c";
		reg = <0x2002d000 0x1000>;
		interrupts = <GIC_SPI 40 IRQ_TYPE_LEVEL_HIGH>;
		#address-cells = <1>;
		#size-cells = <0>;

		rockchip,grf = <&grf>;

		clock-names = "i2c";
		clocks = <&cru PCLK_I2C0>;

		status = "disabled";
	};

	wdt: watchdog@2004c000 {
		compatible = "snps,dw-wdt";
		reg = <0x2004c000 0x100>;
		clocks = <&cru PCLK_WDT>;
		interrupts = <GIC_SPI 51 IRQ_TYPE_LEVEL_HIGH>;
		status = "disabled";
	};

	saradc: saradc@2006c000 {
		compatible = "rockchip,saradc";
		reg = <0x2006c000 0x100>;
		interrupts = <GIC_SPI 26 IRQ_TYPE_LEVEL_HIGH>;
		#io-channel-cells = <1>;
		clocks = <&cru SCLK_SARADC>, <&cru PCLK_SARADC>;
		clock-names = "saradc", "apb_pclk";
		resets = <&cru SRST_SARADC>;
		reset-names = "saradc-apb";
		status = "disabled";
	};

	spi0: spi@20070000 {
		compatible = "rockchip,rk3066-spi";
		clocks = <&cru SCLK_SPI0>, <&cru PCLK_SPI0>;
		clock-names = "spiclk", "apb_pclk";
		interrupts = <GIC_SPI 38 IRQ_TYPE_LEVEL_HIGH>;
		reg = <0x20070000 0x1000>;
		#address-cells = <1>;
		#size-cells = <0>;
		dmas = <&dmac2 10>, <&dmac2 11>;
		dma-names = "tx", "rx";
		status = "disabled";
	};

	lradc: lradc@20080000 { 
        compatible = "test,adc-keys";
		reg = <0x01c22800 0x100>;
		interrupts = <31>;
		vref-supply = <&reg_vcc3v0>;

		button@191 { 
            label = "Volume Up";
			linux,code = <KEY_VOLUMEUP>;
			channel = <0>;
			voltage = <191274>; 
            };

		button@392 { 
            label = "Volume Down";
			linux,code = <KEY_VOLUMEDOWN>;
			channel = <0>;
			voltage = <392644>; 
            };

		button@601 {
            label = "Menu";
			linux,code = <KEY_MENU>;
			channel = <0>;
			voltage = <601151>; 
            };

		button@795 {
            label = "Enter";
			linux,code = <KEY_ENTER>;
			channel = <0>;
			voltage = <795090>;
            };

		button@987 { 
            label = "Home";
			linux,code = <KEY_HOMEPAGE>;
			channel = <0>;
			voltage = <987387>; 
            }; 
    }; 
};

        以上涉及到usb、uart、IIC、EMMC、spi等等基本涵盖了Linux常用驱动类型,对比发现它们都有compatible、status这两个,这两个也是必不可少的。compatible是驱动作为platform设备之后,内核加载的时候进行匹配,如果compatible里面字串和你写的驱动里compatible的不一样就会加载失败;status一般是disabled或者okay,如果你用到这个设备,就设定为okay,如果不用到它就设定为disabled。

驱动代码解析

driver加载

        我们以一个adc按键驱动为例,它在上面dtsi文件的最后一个,驱动加载

static const struct of_device_id adc_of_match[] = {
	{ .compatible = "test,adc-keys", },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, adc_of_match);

static struct platform_driver adc_driver = {
	.driver = {
		.name	= "adc-keys",
		.of_match_table = of_match_ptr(adc_of_match),
	},
	.probe	= adc_probe,
};

module_platform_driver(adc_driver);

        上面compatible字段的字符串要跟dtsi文件的字符串一致才可以被加载上,匹配完之后即可执行probe函数

static int adc_probe(struct platform_device *pdev)
{
	struct adc_data *lradc;
	struct device *dev = &pdev->dev;
	int i;
	int error;

	lradc = devm_kzalloc(dev, sizeof(struct adc_data), GFP_KERNEL);
	if (!lradc)
		return -ENOMEM;

	error = adc_load_dt_keymap(dev, lradc);
	if (error)
		return error;

	lradc->vref_supply = devm_regulator_get(dev, "vref");
	if (IS_ERR(lradc->vref_supply))
		return PTR_ERR(lradc->vref_supply);

	lradc->dev = dev;
	lradc->input = devm_input_allocate_device(dev);
	if (!lradc->input)
		return -ENOMEM;

	lradc->input->name = pdev->name;
	lradc->input->phys = "adc/input0";
	lradc->input->open = adc_open;
	lradc->input->close = adc_close;
	lradc->input->id.bustype = BUS_HOST;
	lradc->input->id.vendor = 0x0001;
	lradc->input->id.product = 0x0001;
	lradc->input->id.version = 0x0100;

	__set_bit(EV_KEY, lradc->input->evbit);
	for (i = 0; i < lradc->chan0_map_count; i++)
		__set_bit(lradc->chan0_map[i].keycode, lradc->input->keybit);

	input_set_drvdata(lradc->input, lradc);

	lradc->base = devm_ioremap_resource(dev,
			      platform_get_resource(pdev, IORESOURCE_MEM, 0));
	if (IS_ERR(lradc->base))
		return PTR_ERR(lradc->base);

	error = devm_request_irq(dev, platform_get_irq(pdev, 0),
				 adc_irq, 0,
				 "adc-keys", lradc);
	if (error)
		return error;

	error = input_register_device(lradc->input);
	if (error)
		return error;

	return 0;
}

dtsi文件内容解析

        上面probe函数跑到adc_load_dt_keymap就会从dtsi中读取按键配置信息,然后存到adc_data对应结构体中,下面来重点分析一下对dtsi文件的解析

static int adc_load_dt_keymap(struct device *dev,
				      struct adc_data *lradc)
{
	struct device_node *np, *pp;
	int i;
	int error;

	np = dev->of_node;
	if (!np)
		return -EINVAL;

	lradc->chan0_map_count = of_get_child_count(np);
	if (lradc->chan0_map_count == 0) {
		dev_err(dev, "keymap is missing in device tree\n");
		return -EINVAL;
	}

	lradc->chan0_map = devm_kmalloc_array(dev, lradc->chan0_map_count,
					      sizeof(struct adc_keymap),
					      GFP_KERNEL);
	if (!lradc->chan0_map)
		return -ENOMEM;

	i = 0;
	for_each_child_of_node(np, pp) {
		struct adc_keymap *map = &lradc->chan0_map[i];
		u32 channel;

		error = of_property_read_u32(pp, "channel", &channel);
		if (error || channel != 0) {
			dev_err(dev, "%s: Inval channel prop\n", pp->name);
			return -EINVAL;
		}

		error = of_property_read_u32(pp, "voltage", &map->voltage);
		if (error) {
			dev_err(dev, "%s: Inval voltage prop\n", pp->name);
			return -EINVAL;
		}

		error = of_property_read_u32(pp, "linux,code", &map->keycode);
		if (error) {
			dev_err(dev, "%s: Inval linux,code prop\n", pp->name);
			return -EINVAL;
		}

		i++;
	}

	return 0;
}

        四个重要解析函数     

        of_get_child_count从dtsi中获取节点的数目,具体代码实现如下,从实现中可以看出它调用的是for_each_child_of_node

static inline int of_get_child_count(const struct device_node *np)
{
	struct device_node *child;
	int num = 0;

	for_each_child_of_node(np, child)
		num++;

	return num;
}

        devm_kmalloc_array根据节点数目来分配空间,本示例根据我们定义的device和上面得到的节点数目分配一个块内存空间供后面从dsti查找相关关键字后填充。这里用的是数组型malloc,最终也是用到devm_kmalloc

static inline void *devm_kmalloc_array(struct device *dev,
				       size_t n, size_t size, gfp_t flags)
{
	if (size != 0 && n > SIZE_MAX / size)
		return NULL;
	return devm_kmalloc(dev, n * size, flags);
}

        for_each_child_of_node轮询节点,用的是一个宏定义循环查找

#define for_each_child_of_node(parent, child) \
	for (child = of_get_next_child(parent, NULL); child != NULL; \
	     child = of_get_next_child(parent, child))

        of_property_read_u32根据设备节点device_node查找字符串

static inline int of_property_read_u32(const struct device_node *np,
				       const char *propname,
				       u32 *out_value)
{
	return of_property_read_u32_array(np, propname, out_value, 1);
}

static inline int of_property_read_u32_array(const struct device_node *np,
					     const char *propname,
					     u32 *out_values, size_t sz)
{
	int ret = of_property_read_variable_u32_array(np, propname, out_values,
						      sz, 0);
	if (ret >= 0)
		return 0;
	else
		return ret;
}

int of_property_read_variable_u32_array(const struct device_node *np,
			       const char *propname, u32 *out_values,
			       size_t sz_min, size_t sz_max)
{
	size_t sz, count;
	const __be32 *val = of_find_property_value_of_size(np, propname,
						(sz_min * sizeof(*out_values)),
						(sz_max * sizeof(*out_values)),
						&sz);

	if (IS_ERR(val))
		return PTR_ERR(val);

	if (!sz_max)
		sz = sz_min;
	else
		sz /= sizeof(*out_values);

	count = sz;
	while (count--)
		*out_values++ = be32_to_cpup(val++);

	return sz;
}

以上of相关的代码都可以通过Linux源码找到相关的定义,有兴趣的读者可以继续深挖代码是如何实现的。

完整代码如下

#include <linux/err.h>
#include <linux/init.h>
#include <linux/input.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>

#define LRADC_CTRL		0x00
#define LRADC_INTC		0x04
#define LRADC_INTS		0x08
#define LRADC_DATA0		0x0c
#define LRADC_DATA1		0x10

/* LRADC_CTRL bits */
#define FIRST_CONVERT_DLY(x)	((x) << 24) /* 8 bits */
#define CHAN_SELECT(x)		((x) << 22) /* 2 bits */
#define CONTINUE_TIME_SEL(x)	((x) << 16) /* 4 bits */
#define KEY_MODE_SEL(x)		((x) << 12) /* 2 bits */
#define LEVELA_B_CNT(x)		((x) << 8)  /* 4 bits */
#define HOLD_EN(x)		((x) << 6)
#define LEVELB_VOL(x)		((x) << 4)  /* 2 bits */
#define SAMPLE_RATE(x)		((x) << 2)  /* 2 bits */
#define ENABLE(x)		((x) << 0)

/* LRADC_INTC and LRADC_INTS bits */
#define CHAN1_KEYUP_IRQ		BIT(12)
#define CHAN1_ALRDY_HOLD_IRQ	BIT(11)
#define CHAN1_HOLD_IRQ		BIT(10)
#define	CHAN1_KEYDOWN_IRQ	BIT(9)
#define CHAN1_DATA_IRQ		BIT(8)
#define CHAN0_KEYUP_IRQ		BIT(4)
#define CHAN0_ALRDY_HOLD_IRQ	BIT(3)
#define CHAN0_HOLD_IRQ		BIT(2)
#define	CHAN0_KEYDOWN_IRQ	BIT(1)
#define CHAN0_DATA_IRQ		BIT(0)

struct adc_keymap {
	u32 voltage;
	u32 keycode;
};

struct adc_data {
	struct device *dev;
	struct input_dev *input;
	void __iomem *base;
	struct regulator *vref_supply;
	struct adc_keymap *chan0_map;
	u32 chan0_map_count;
	u32 chan0_keycode;
	u32 vref;
};

static irqreturn_t adc_irq(int irq, void *dev_id)
{
	struct adc_data *lradc = dev_id;
	u32 i, ints, val, voltage, diff, keycode = 0, closest = 0xffffffff;

	ints  = readl(lradc->base + LRADC_INTS);

	/*
	 * lradc supports only one keypress at a time, release does not give
	 * any info as to which key was released, so we cache the keycode.
	 */

	if (ints & CHAN0_KEYUP_IRQ) {
		input_report_key(lradc->input, lradc->chan0_keycode, 0);
		lradc->chan0_keycode = 0;
	}

	if ((ints & CHAN0_KEYDOWN_IRQ) && lradc->chan0_keycode == 0) {
		val = readl(lradc->base + LRADC_DATA0) & 0x3f;
		voltage = val * lradc->vref / 63;

		for (i = 0; i < lradc->chan0_map_count; i++) {
			diff = abs(lradc->chan0_map[i].voltage - voltage);
			if (diff < closest) {
				closest = diff;
				keycode = lradc->chan0_map[i].keycode;
			}
		}

		lradc->chan0_keycode = keycode;
		input_report_key(lradc->input, lradc->chan0_keycode, 1);
	}

	input_sync(lradc->input);

	writel(ints, lradc->base + LRADC_INTS);

	return IRQ_HANDLED;
}

static int adc_open(struct input_dev *dev)
{
	struct adc_data *lradc = input_get_drvdata(dev);
	int error;

	error = regulator_enable(lradc->vref_supply);
	if (error)
		return error;

	/* lradc Vref internally is divided by 2/3 */
	lradc->vref = regulator_get_voltage(lradc->vref_supply) * 2 / 3;

	/*
	 * Set sample time to 4 ms / 250 Hz. Wait 2 * 4 ms for key to
	 * stabilize on press, wait (1 + 1) * 4 ms for key release
	 */
	writel(FIRST_CONVERT_DLY(2) | LEVELA_B_CNT(1) | HOLD_EN(1) |
		SAMPLE_RATE(0) | ENABLE(1), lradc->base + LRADC_CTRL);

	writel(CHAN0_KEYUP_IRQ | CHAN0_KEYDOWN_IRQ, lradc->base + LRADC_INTC);

	return 0;
}

static void adc_close(struct input_dev *dev)
{
	struct adc_data *lradc = input_get_drvdata(dev);

	/* Disable lradc, leave other settings unchanged */
	writel(FIRST_CONVERT_DLY(2) | LEVELA_B_CNT(1) | HOLD_EN(1) |
		SAMPLE_RATE(2), lradc->base + LRADC_CTRL);
	writel(0, lradc->base + LRADC_INTC);

	regulator_disable(lradc->vref_supply);
}

static int adc_load_dt_keymap(struct device *dev,
				      struct adc_data *lradc)
{
	struct device_node *np, *pp;
	int i;
	int error;

	np = dev->of_node;
	if (!np)
		return -EINVAL;

	lradc->chan0_map_count = of_get_child_count(np);
	if (lradc->chan0_map_count == 0) {
		dev_err(dev, "keymap is missing in device tree\n");
		return -EINVAL;
	}

	lradc->chan0_map = devm_kmalloc_array(dev, lradc->chan0_map_count,
					      sizeof(struct adc_keymap),
					      GFP_KERNEL);
	if (!lradc->chan0_map)
		return -ENOMEM;

	i = 0;
	for_each_child_of_node(np, pp) {
		struct adc_keymap *map = &lradc->chan0_map[i];
		u32 channel;

		error = of_property_read_u32(pp, "channel", &channel);
		if (error || channel != 0) {
			dev_err(dev, "%s: Inval channel prop\n", pp->name);
			return -EINVAL;
		}

		error = of_property_read_u32(pp, "voltage", &map->voltage);
		if (error) {
			dev_err(dev, "%s: Inval voltage prop\n", pp->name);
			return -EINVAL;
		}

		error = of_property_read_u32(pp, "linux,code", &map->keycode);
		if (error) {
			dev_err(dev, "%s: Inval linux,code prop\n", pp->name);
			return -EINVAL;
		}

		i++;
	}

	return 0;
}

static int adc_probe(struct platform_device *pdev)
{
	struct adc_data *lradc;
	struct device *dev = &pdev->dev;
	int i;
	int error;

	lradc = devm_kzalloc(dev, sizeof(struct adc_data), GFP_KERNEL);
	if (!lradc)
		return -ENOMEM;

	error = adc_load_dt_keymap(dev, lradc);
	if (error)
		return error;

	lradc->vref_supply = devm_regulator_get(dev, "vref");
	if (IS_ERR(lradc->vref_supply))
		return PTR_ERR(lradc->vref_supply);

	lradc->dev = dev;
	lradc->input = devm_input_allocate_device(dev);
	if (!lradc->input)
		return -ENOMEM;

	lradc->input->name = pdev->name;
	lradc->input->phys = "adc/input0";
	lradc->input->open = adc_open;
	lradc->input->close = adc_close;
	lradc->input->id.bustype = BUS_HOST;
	lradc->input->id.vendor = 0x0001;
	lradc->input->id.product = 0x0001;
	lradc->input->id.version = 0x0100;

	__set_bit(EV_KEY, lradc->input->evbit);
	for (i = 0; i < lradc->chan0_map_count; i++)
		__set_bit(lradc->chan0_map[i].keycode, lradc->input->keybit);

	input_set_drvdata(lradc->input, lradc);

	lradc->base = devm_ioremap_resource(dev,
			      platform_get_resource(pdev, IORESOURCE_MEM, 0));
	if (IS_ERR(lradc->base))
		return PTR_ERR(lradc->base);

	error = devm_request_irq(dev, platform_get_irq(pdev, 0),
				 adc_irq, 0,
				 "adc-keys", lradc);
	if (error)
		return error;

	error = input_register_device(lradc->input);
	if (error)
		return error;

	return 0;
}

static const struct of_device_id adc_of_match[] = {
	{ .compatible = "test,adc-keys", },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, adc_of_match);

static struct platform_driver adc_driver = {
	.driver = {
		.name	= "adc-keys",
		.of_match_table = of_match_ptr(adc_of_match),
	},
	.probe	= adc_probe,
};

module_platform_driver(adc_driver);

MODULE_DESCRIPTION("adc attached tablet keys driver");
MODULE_LICENSE("GPL");

Logo

为开发者提供学习成长、分享交流、生态实践、资源工具等服务,帮助开发者快速成长。

更多推荐